2023 年度研究テーマ指定助成事業 選考委員会 審査結果報告

No.	氏名・敬称略 (50 音順)	所属機関	研究 テーマ 下記参照	タイトル
1	生島 一樹 柴原 正和 前田 新太郎	大阪公立大学	689	金属積層造形の力学的諸問題の解決に向けた 革新的シミュレーション手法の構築
2	後藤 浩二	九州大学	89	曲線曲面構造を有する大型部材の WAAM 法 積層造形に関する基礎研究
3	古免 久弥	大阪大学	(5)	ミリスケールの WAAM プロセスの確立とそ の溶融池対流現象の解明
4	野村 和史	大阪大学	4	WAAM 材欠陥その場検出のためのレーザ超 音波法を用いた計測技術の開発
5	山田 崇恭	東京大学	①	積層造形における最大造形寸法の限界を突破 する複数部材トポロジー最適化

≪指定する研究テーマ≫

金属を材料とした積層造形技術における①~⑨のいずれかとします。

AM 設計	① 積層プロセスを織り込んだ DfAM (AM 造形限界を考慮した形状最適化)		
AM プロセス	② 溶融池現象のシミュレーションモデルの構築 (PBF)		
	③ ウォール厚さ・空間寸法などの造形限界について (PBF)		
	④ インプロセスモニタリング (PBF/DED)		
	⑤ 溶接アークと AM アークの放電・溶融池現象(DED-ARC)		
AM 冶金	⑥ AM 凝固割れの現象論的解析(PBF/DED)		
	⑦ AM ミクロ組織の造形時と後熱処理との関係(PBF/DED)		
AM 力学	⑧ AM 造形物の残留応力解析と熱変形の実験・理論解析(PBF/DED)		
	⑨ 造形対象の形状・サイズと入熱量が熱変形・残留応力に及ぼす影響		
	(PBF/DED)		