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Outline 

• Comparison of deterministic & probabilistic 
approaches to structural integrity assessment 
 

• Example Application 1:  pressurized thermal 
shock (PTS) of the reactor pressure vessel 
(RPV) 
 

• Example Application 2:  leak before break 
(LBB) of primary system piping 
 

• Concluding remarks 
 

プレゼンター
プレゼンテーションのノート
Does this overall outline suit KINS?
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• Easier … 
– than probabilistic analyses 
– to demonstrate their 

conservatism than for a 
probabilistic analysis 

 

• A simplified example 
– One variable (X1) controls 

operating lifetime 
– A conservative upper 

bound on X1 produces a 
safe (& reasonable) lower-
bound estimate of 
operating life  

Deterministic Analyses 
Why do we use them? 
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Lower-bound estimate of 
operating life  
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Deterministic Analyses 
When do they break down? 

Operating 
Lifetime 

X1 

X2 

• A slightly less simplified 
example 
– Two variables (X1 & X2) 

control operating lifetime 
– Conservative upper bounds 

on X1 & X2 can produce a 
safe (but unreasonable) 
lower-bound estimate of 
operating life  

 

• The unreasonableness 
becomes more extreme 
as the number of 
controlling variables 
increases (X1, X2, X3, … 
Xn) 

 
 

Lower-bound estimate 
of operating life  

Conservative upper-
bound on X2 
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• To address deficiencies of 
the deterministic approach: 
– Conservatism quickly 

multiplies 
• When every variable is 

bounded 
• When inherently conservative 

models are used 
– Does not scale well to multi-

variate problems  
• Quantifying the conservatism 

of the answer becomes 
impossible 

 

• Probabilistic approach 
– Conservatism & safety 

ensured by controlling to the 
end result (failure probability) 
 
 
 
 

Probabilistic Analyses 
Why might they be used? 

An Incomplete List of Variables 
in a PTS Analysis 
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Deterministic vs. Probabilistic 
Reality 

PFAILURE Distributions 

Driving 
Force 

Resistance 
Zero 

DF R 
Small 

DF R 
Large 

Actual Situation (Reality) 

  
 

 
  

The requirement imposed in a 
deterministic framework … 

… is a comforting abstraction, 
but it obscures the fact that 
in the reality we seek to 
represent driving force and 
resistance are inherently 
distributed quantities. 
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Deterministic vs. Probabilistic 
Mathematical Models of Reality 

PFAILURE Distributions Deterministic 
Models of Reality 

Probabilistic 

Driving 
Force 

Resistance 
Zero 

DF R DF R 

DF R 
Small 

DF R DF R 

DF R 
Large 

DF R DF R 

Actual Situation (Reality) 

Estimate: No “Failure” Estimate: PFAIL=0 

Estimate: “Failure” Estimate: PFAIL= Very Small 

Estimate: “Failure” Estimate: PFAIL= Large 

Future events are correctly represented as probabilities, not absolutes. 
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Similarities 
• Both treat uncertainty 

– Deterministic models bound 
uncertainty 

– Probabilistic models quantify 
uncertainty 

 

• Probabilistic models may 
contain deterministic 
aspects where full 
information is lacking, e.g.: 
– Conservative models 
– Bounding inputs 
– And so on … 

 

Differences 
• How result is expressed 

– Deterministic:  “Failed” or 
“Not Failed” 

– Probabilistic:  A failure 
probability 

 

• Who the decisionmaker is 
– Deterministic:  Only the 

engineering analyst 
(because “failure” is 
unacceptable) 

– Probabilistic:  Many 
people (because some 
failure probability can be 
accepted) 

 

Deterministic vs. Probabilistic 
Similarities and Differences 

Nothing changes by adopting a probabilistic analysis, other than 
acknowledging that which already exists.  
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PRESSURIZED THERMAL SHOCK 
First Example Application of PFM 
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TOPERATING = 290 oC 

Secondary Break 
TMIN = 100 oC 

Primary Break 
TMIN ~ 5 oC 

Temperature 
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RTNDT@LIMIT 

• 10 CFR 50.61 (PTS Rule) 
– Established 1985 
– Conservatisms inherent to 

basis for RTPTS can limit 
operable lifetime 

 

• Considerations in 
development of 10 CFR 
50.61a (Alternate Rule) 
– 10 CFR 50.61 conservatisms 

will cause plant-specific 
submittals, all addressing the 
same issues 

– Alternative approaches 
considered 
• Individual review of plant-

specific assessments 
• Comprehensive re-assessment 

of PTS performed proactively & 
with thorough review by 
technical experts 

 

Pressurized Thermal Shock 

Initial RTNDT 

Increasing Time 
in Operation 
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Key Aspects of 
10 CFR 50.61a Development 

• Policy 
Establishing a risk-informed limit consistent with 
Commission policy guidance 

 

• Technical 
Translating this limit into screening tool expressed in 
terms of measurable variables (e.g., embrittlement, 
flaws) 

 

• Communication and Education 
Obtaining input from and addressing the concerns of 
a diverse array of constituencies   

 
 

プレゼンター
プレゼンテーションのノート
This is a more formal presentation of our analysis process.
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10 CFR 50.61a Limits Follow 
from Policy Decisions 

Mean ∆-Mean 
CDF 10-4/ry 10-5/ry 
LERF 10-5/ry 10-6/ry 

Regulatory Guide 1.174 

51 FR 28044, Safety Goal Policy Statement (1986) 

SECY-00-0077, Modifications to Safety Goal Policy Statement 
CDF < 1x10-4/ry CDF & 
QHO limits for generic 
decisions 

QHOs < 0.1% of the total 
public risk (prompt & 
latent) 

10 CFR 50.61a 
Voluntary Alternative Pressurized Thermal Shock Rule 

• Accident sequence progression study shows that 
through-wall cracking rarely leads to LERF 

• Conservatively assumes equivalence of LERF and the 
yearly through-wall cracking frequency (TWCF) of the 
reactor pressure vessel 
 

• Along with defense-in-depth considerations, a 
tolerable limit on TWCF established as 10-6/ry 
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Technical Approach 

#1.  Commission 
guidance drives 
performance metric, 
and limit value. 

プレゼンター
プレゼンテーションのノート
This is a more formal presentation of our analysis process.
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#2.  Staff develops & 
links models to 
estimate this 
performance metric. 

Technical Approach 

プレゼンター
プレゼンテーションのノート
This is a more formal presentation of our analysis process.
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#3.  Metric estimated 
based on detailed 
analysis of 3 plants. 

Beaver ValleyBeaver ValleyPalisadesPalisades

OconeeOconee

Technical Approach 

プレゼンター
プレゼンテーションのノート
This is a more formal presentation of our analysis process.
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#4.  These results + 
other insights 
motivate 
generalization to all 
plants. 

Technical Approach 

プレゼンター
プレゼンテーションのノート
This is a more formal presentation of our analysis process.
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Probabilistic Fracture Model 

Flaw density, location,
Length, & depth

Flaw
Distribution

Model

Pressure vs. time

Temperature vs. time

Thermal
Hydraulics

Model

Event
Sequence

Event
Frequency

PRA
Model

Fluence on Vessel ID
Neutronics

Model

Material Property &
Composition Data

Crack
Initiation

Model

Conditional
Probability of

Crack Initiation

Through Wall 
Cracking

Model

Conditional
Probability of

Thru-Wall Cracking

Matrix
Multiply

Yearly
Frequency of

Thru-Wall
Cracking

Fracture Mechanics
Model

Next 
Slide 
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Applied
KI

Elastic Modulus
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Details of the Crack 
Initiation Model 

Details of some 
models follow 
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KIc 

Parameters of the 
Initiation Model 
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Parameters of Crack 
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Uncertainty Treatment in 
the Crack Initiation Model 
• Because of implicit conservative 

bias, fracture toughness models 
based on the RTNDT index 
temperature contain a mix of 

• Epistemic uncertainty in RTNDT, 
and 

• Aleatory uncertainty in KIc 

• Use of the best-estimate Master 
Curve index temperature (To) 
effectively removes epistemic 
uncertainty, leaving only the 
aleatory uncertainties produced 
by material variability 

 
  

  

 E1921 Valid

 E399 Valid

 1% LB

 M edian

 99% UB

 T-To  [oC] 
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Crack Initiation Toughness 
KJc 

Crack Arrest 
Toughness 

KIa 

Upper Shelf 
Toughness 

JIc 
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Crack Initiation Toughness 
KJc 

Upper Shelf 
Toughness 
JIc 

Upper Shelf Toughness:  
JIc Master Curve [EricksonKirk] 
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Crack Arrest Toughness 

KIa 

Upper Shelf Toughness 

JIc 

Crack Arrest Toughness: 
KIa Master Curve  [Wallin, Kirk] 
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Upper Shelf Toughness:  
JIc Master Curve [EricksonKirk] 
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Major Outcomes of PTS 
Re-Evaluation Analyses 

 
• What operational transients most influence PTS 

risk? 
 

• What material features most influence PTS risk? 
 

• Are these dominant material features / transients 
common across the fleet? 
 

• New limits on embrittlement based on RI 
calculations 
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Important Transient Classes 
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Important Transient Classes 
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Important Material Features 
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Important Material Features 
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10 CFR 50.61 
REQUIRED 

10 CFR 50.61a 
VOLUNTARY 

Reference Temperature 
Limits More restrictive Less restrictive 

Plant-specific 
surveillance data check Required – 1 test Required – 3 tests 

Plant specific inspection 
for flaws Not required Required 

Less restrictive embrittlement limits are justified by 
new calculations, & enable longer operations, but 

gating criteria must be satisfied to use 10 CFR 50.61a. 

Outcome 
50.61 vs. 50.61a Comparison 
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10 CFR 50.61a Limits for 
Plate Plants 

 
1x10-6/ry TWCF limit

Simplified Implementation
RTMAX-AW ≤ 269°F, and
RTMAX-PL ≤ 356°F, and
RTMAX-AW + RTMAX-PL ≤ 538°F.

 

1x10-6/ry TWCF limit

Simplified Implementation
RTMAX-AW ≤ 222°F, and
RTMAX-PL ≤ 293°F, and
RTMAX-AW + RTMAX-PL ≤ 445°F.

tWALL < 9½-in. 

tWALL = 10½- to 11½-in. 

If plants can satisfy the gating criteria, most should be 
compliant with 10 CFR 50.61a. 
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• 50.61a opens the 
possibility for increased 
operational lifetime with 
no compromise to safety 
– New embrittlement limits 

justified by more realistic 
analysis 

 

• Making this change took 
considerable time & 
resources: 
– Complexity of the topic 
– “New” approach 

(“probabilistic” instead of 
“deterministic”) 

– Variety of stakeholders 
involved 

 

• Unanticipated benefits 
– Comprehensive review of 

all model components 
– Updated state of 

knowledge influences 
regulations 

10 CFR 50.61a Summary 
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LEAK BEFORE BREAK 
Second Example Application of PFM 
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LBB Background 
Problem Being Addressed 

• 10 CFR 50 Appendix A General Design Criteria 4: permits exclusion of 
local dynamic effects of pipe ruptures from design basis 
 

• LBB-justified modifications to plant design (e.g. elimination of pipe 
whip restraints, jet impingement shields) have been approved … 
– Assuming that no active degradation mechanisms exist 
– But active degradation mechanisms (PWSCC) do exist 

 

• Solutions 
– Short term:  mitigations and inspections  
– Long term:  probabilistic evaluation 

LBB used in Oil and Gas
Praise first released

NUREG-1061
SRP3.6.3 Rev 0

First LBB approval

First Alloy 600 cracking

LBB Reg Guide Draft

VC Summer crack
PRO-LOCA first released

MPR-139

Wolf Creek

SRP3.6.3 Rev 1
NUREG-1829
RIS2008-25

xLPR initiated
xLPR pilot complete

xLPR V2 complete

LBB regulation-->

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
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• Develop a probabilistic 
assessment tool that can be 
used to directly assess 
compliance with 10 CFR 50 
App-A GDC-4 
 

• Tool will be 
– Comprehensive with respect to 

known challenges and loadings 
– Vetted with respect to scientific 

adequacy of models and inputs 
– Flexible to permit analysis of a 

variety of in service situations 
– Adaptable: able to accommodate  

• evolving / improving knowledge 
• new damage mechanisms 

xLPR Overview 
Goals & Timeline 

2008 

2010 

2012 

2018 

2016 

2014 

Project Started 

Pilot Study 
Complete 

xLPR Version 2 
Code Complete 
LBB Reg. Guide 

2020 

Criterion 4: Structures, systems, and 
components important to safety 
shall … shall be appropriately 
protected against dynamic effects. … 
However, dynamic effects 
associated with postulated pipe 
ruptures in nuclear power units may 
be excluded from the design basis 
when analyses … demonstrate that 
the probability of fluid system 
piping rupture is extremely low … 
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Technical Scope of xLPR Project 
xLPR = eXtremely Low Probability of Rupture 

Pr
ob

ab
ili

ty
 D

en
si

ty
 (%

) 

Failure Frequency / year 

• Conduct analyses with baseline conditions (per SRP 3.6.3) 

Change in risk 
acceptable? 

• Conduct analyses with modified condition 

Change in risk 
acceptable! 

PWSCC 

Weld Overlay 

Baseline 
Results 

Slide 
35 

Quantify effect of 
current mitigations 
& inspections to 
inform future 
decisions 
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xLPR 
Status & Team Members 
• Pilot study [Complete]  

– To demonstrate feasibility 
– Determine appropriate 

probabilistic framework 
– Develop plan for future 

version 
 

• V2.0 [Underway] 
– Develop tool for use in LBB 

Reg. Guide development 
– Permit quantitative 

assessment of compliance 
with GDC-4 

– Prioritize future research 
efforts 

 

• LBB Reg. Guide [Future] 
– Effort beginning in 2015 
– Possible replacement or 

augmentation to SRP 3.6.3 

PEAI 
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xLPR Technical Flow 
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OBJECTIVES  
• Develop and assess xLPR 

management structure 
• Determine appropriate 

probabilistic framework 
• Assess the feasibility of 

developing a modular PFM 
code 
 

FEATURES 
• Focused on pressurizer surge 

nozzle DM weld with PWSCC 
 

• Used comprehensive 
configuration management 
 

• Developed detailed program 
plan for future activities 
 
 

RESULTS 
• Demonstrated it is feasible to 

develop a modular-based 
probabilistic fracture 
mechanics code within a 
cooperative agreement while 
properly accounting for the 
problem uncertainties 

• Identified potential efficiency 
gains in the program 
management structure 

• Selected commercial software 
as the computational 
framework  
 

xLPR Pilot Study 
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xLPR Pilot Study 
Example Results 
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xLPR Version 2.0 
Goals 

• Version 2.0 is expanded to handle welds within 
piping systems approved for LBB 
– Appropriate materials, loads, degradation 

mechanisms, mitigation, inspection, leak detection 
 

• Rigorous quality assurance including verification 
and validation (V&V) process 
 

• Capabilities of Version 2.0 will meet requirements 
for LBB lines, but must stay within available cost 
and schedule limitations 
 

• Model inclusion in xLPR Version 2.0 does not 
guarantee regulatory approval.   
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xLPR Version 2.0 
High Level Flow Chart 
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xLPR Version 2.0 
Framework 

GUI/Input database 

Landing platform 

Physical models 

This strategy allows for multi-entities to share and work on 
the framework development in an efficient and parallel 
manner. 

GoldSim software 

Slide 
42 
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Closing Remarks 

• PFM in General 
A logical process for realistic assessment of 
structural reliability. 

 

• RPV Integrity 
Successfully applied to PTS.  Work is in-progress in 
other areas (normal heatup & cooldown). 

 

• Primary Piping Integrity 
Work underway to apply PFM insights to LBB 
regulations and requirements. 

 
 

プレゼンター
プレゼンテーションのノート
This is a more formal presentation of our analysis process.
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