

How to Use PASCAL3

Kazuya Osakabe

Mizuho Information & Research Institute, Inc.

October 24, 2014

International Symposium on Improvement of Nuclear Safety Using Probabilistic Fracture Mechanics

The Welding Hall, Tokyo, Japan

*This presentation includes results obtained under the contract research entrusted from Nuclear Regulatory Authority of Japan.

Mizuho Information & Research Institute

Introduction

- 1. Overview of PASCAL3
- 2. Input and Output Data of PASCAL3
- 3. An example of PFM Analysis Using PASCAL3
- 4. On-going Work

1-1 Structural Integrity of RPV

Area of Interest

MIZHO

- Beltline of Reactor Pressure Vessel (RPV)
- During Pressurized Thermal Shock (PTS) Transients
- Preventing RPV from Brittle Crack
 Initiation
- Deterministic Structural Integrity
 Assessment Prescribed in JEAC 4206-2007 (1-2)
- Probabilistic Approach of PASCAL3 (1-3, 1-4)
- Conditional Probability of Through-Wall Cracking(CP-TWC), Through-Wall Cracking Frequency(TWCF) (1-5)

1-2 Structural Integrity Assessment in JEAC4206

OneMIZUHO

$K_{\rm I}$ and $K_{\rm Ic}$ curves during PTS

Temperature at crack tip

 ✓ Structural integrity (against brittle crack initiation) is maintained if K_I is smaller than K_{Ic} in deterministic approach.

 ✓ If uncertainties in K_I and K_{Ic} are taken into account, probabilities of crack initiation can be evaluated.

1- 4 Monte Carlo Method

Schematic of PFM analysis by Monte Carlo simulation

- ✓ Users need to input mean value and standard deviation for parameters of normal distribution such as initial RT_{NDT}, chemical composition, fast neutron fluence.
- \checkmark A different value is used for each RPV sample.
- ✓ Each calculation of the integrity evaluation is performed in deterministic fracture mechanics approach.
- ✓ The fracture probability is calculated from the number of fractured vessels and number of calculated samples.

1-5 Probability / Frequency

2-1 Input Data by Users

2-② Sample of Input File of PASCAL3

- ✓ A sample input file and some typical example files will be distributed (with manuals on the ways to change the sample input file into the examples).
- ✓ Detailed manual (JAEA-Data/Code-2010-033) can be downloaded for free from http://jolissrchinter.tokai-sc.jaea.go.jp/pdfdata/JAEA-Data-Code-2010-033.pdf (in Japanese)

2-3 How to Run PASCAL3

- Environment
 Windows 7 32bit/64bit
 - \checkmark Text editor for input and output files
 - ✓ Acrobat reader for manuals

- > Run
 - ✓ MS-DOS command prompt (or make and run "*.bat" file)
 - Main output file" '(inputfilename)'.rsl" file

2-④ Typical Output

OneMIZUHO

3-1 Analysis Conditions (1/2)

> Typical Input Items

Item	Condition	
Geometry of RPV	ID:4m, Thickness of Base Metal:200mm, Thickness of cladding:5mm, Height of Beltline : 4m	
 Types of PTS Transients and Occurrence Frequencies 	LBLOCA: 7.1×10^{-6} [events/year]SBLOCA: 5.9×10^{-4} [events/year]MSLB: 2.2×10^{-3} [events/year]SOV: 9.9×10^{-4} [events/year]	
Fast Neutron Fluence	Mean : 1×10 ²⁰ n/cm ² , E>1MeV SD : 0.131 of Mean Value	
Chemical Composition	Cu Mean0.16%, SD0.01% Ni Mean0.61%, SD0.02%	
Embrittlement Prediction	JEAC4201-2007 (SD10°C)	
Initial RT _{NDT}	Mean0°C, SD9.4°C	
Fracture Toughness K _{Ic}	PASCAL Weibull Type	
Crack Arrest Toughness K _{Ia}	ORNL Weibull Type	
Warm Pre-Stress	Considered	
Users PASCAL3		

OneMIZUHO

12

3-2 Analysis Conditions (2/2)

Initial Crack

Item	Condition
Surface Crack	Circumferential Semi-Elliptical Crack Crack Depth, Crack Aspect Ratio, Crack Density :Sample Data of VFLAW
	(Crack Depth, a : 6mm) (Crack Aspect Ratio, L/a : 2, 6, 10, 20)
Inner Crack	Circumferential and Axial Elliptical Crack Crack Depth, Crack Aspect Ratio, Crack Density :Sample Data of VFLAW Position in the RPV : 1/8×t from Inner Surface (t:thickness)
Crack Geometry after 1 st Initiation	Circumferential Crack : Circumferential 360 degree Crack Axial Crack : Axial Infinite Length Crack
K _I Solution	Semi-Elliptical Surface Crack : CEA (Solution for Through Clad Crack) Elliptical Inner Crack : JSME Circumferential 360 degree Crack : JSME Axial Infinite Length Crack : JSME

3-3 Analysis Results (Effect of PTS Transients)

Percentage of TWCF of Each PTS Transient to the Total TWCF

3- Analysis Results (Effect of Initial Crack Size)

Percentage of TWCF of Other Crack Densities to the Original TWCF

4 On-going Work

Update of User's Manuals

- ✓ Theory and detailed input manual (JAEA Data/Code 2010-033)
- \checkmark Preparing simplified manual, manual on PTS transient and more

Research on Utilization of PASCAL3 ✓ Guideline for general procedures of PFM analysis ✓ Selection of typical input data and analysis functions of PASCAL3

✓ Verification of PASCAL3

5 Conclusion

- ✓ The main analysis flow of PASCAL3,
- ✓ Typical input and output data of PASCAL3,
- ✓ An example of a PFM analysis using PASCAL3 for different crack densities,

are introduced.

6 Deliverable List

- ✓ Load module of PASCAL3
- ✓ Samples of input/output files
- ✓ Manuals

<u>*How to access is as presented by JAEA.</u>

*****Demonstration*****

- ✓ Demonstration of PASCAL3
- ✓ Samples of input/output files
- ✓ Manuals
- ✓ References

References

- 小坂部, 鬼沢, 柴田, 鈴木, 2007, "原子炉圧力容器用確率論的破壊力学解析コードPASCALver.2 の開発,"日本原子力学会和文論文誌; 6(2): 161-171.
- ▶ 眞崎, 西川, 小坂部, 鬼沢,2011, "原子炉圧力容器用確率論的破壊力学解析コードPASCAL3の使用手引き及び解析手法(受託研究),"JAEA-Data/ Code 2010-033.
- Osakabe, K., Nishikawa, H., Masaki, K., Katsuyama, J. and Onizawa, K., 2013, "Structural Integrity Evaluation of Reactor Pressure Vessels During PTS Events Using Deterministic and Probabilistic Fracture Mechanics Analysis," Proceedings of ASME Pressure Vessels and Piping Division Conference, PVP2013-97923.
- Osakabe, K., Masaki, K., Katsuyama, J., Katsumata, G. and Onizawa, K., 2014, "Estimation of Through-wall Cracking Frequency of RPV under PTS Events Using PFM Analysis Method for Identifying Conservatism Included in Current Japanese Code," Proceedings of ASME Pressure Vessels and Piping Division Conference, PVP2014-28621.
- 眞崎, 小坂部, 勝山, 勝又, 鬼沢, 2014, "加圧熱衝撃時における原子炉圧力容器のき裂貫通頻度 に対する過渡事象及び欠陥密度の影響,"日本機械学会M&M2014カンファレンス, OS0809.

